A revisit to efficient forecasting in linear regression models
نویسنده
چکیده
This paper deals with the improved forecasts for the values of the study variable in linear regression models utilizing the minimum risk approach. It considers the simultaneous forecasting of actual and average values of the study variable and reports the performance properties of the classical unbiased forecasts and two biased forecasts with respect to the criteria of the bias vector,mean squared errormatrix and forecast risk, employing the small disturbance asymptotic theory. © 2012 Elsevier Inc. All rights reserved.
منابع مشابه
پیشبینی قیمتهای نقدی گازطبیعی به کمک مدلهای غیرخطی ناپارامتریک
Developing models for accurate natural gas spot price forecasting is critical because these forecasts are useful in determining a range of regulatory decisions covering both supply and demand of natural gas or for market participants. A price forecasting modeler needs to use trial and error to build mathematical models (such as ANN) for different input combinations. This is very time consuming ...
متن کاملModeling and forecasting US presidential election using learning algorithms
The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are co...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملA Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملA Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast
Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Multivariate Analysis
دوره 114 شماره
صفحات -
تاریخ انتشار 2013